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The  transport of neutral atoms and  molecules in the edge  and  divertor regions of fusion 
experiments has  been  calculated using Monte-Carlo techniques. The  deuterium, tritium, and  
helium atoms are produced by recombinat ion at the walls. The  relevant collision processes of 
charge exchange,  ionization, and  dissociation between the neutrals and  the flowing plasma 
electrons and  ions are included, a long with wall-reflection models. General  two-dimensional 
wall and  plasma geometr ies are treated in a  flexible manner  so that varied configurations can 
be  easily studied. The  algorithm uses a  pseudocoll ision method. Splitting with Russian 
roulette, suppression of absorption, and  efficient scoring techniques are used  to reduce the 
variance. The  resulting code is sufftciently fast and  compact  to be  incorporated into iterative 
treatments of p lasma dynamics requiring numerous neutral profiles. The  calculation yields the 
neutral gas  densities, pressures, fluxes, ionization rates, momentum-transfer rates, energy-  
transfer rates, and  wall-sputtering rates. Applications have  included model ing of p roposed 
INTOR/FED poloidal divertor designs and  other experimental devices. 

I. INTRODUCTION 

A key problem in the design of reactor-sized fusion experiments is the control of 
particle and  heat exhaust. The  helium ash produced by the fusion reaction D + T  + 
He, + n  must be  removed for long-pulse reactor operation. The  helium removal 
technique, however, must m inimize the pump ing of tritium. Thermal heat exhaust 
must be  achieved without introducing impurities into the ma in plasma. Poloidal 
divertors and  pump lim iters have been  proposed to solve these problems [ 11. 

The  performance of divertors and  pump lim iters depends crucially on  the transport 
of the neutrals created in the device. For example, a  design study [ 1  ] for the INTOR 
tokamak uses a  single null poloidal divertor (Fig. la), shaping the magnetic field so 
that the plasma at the edge  flows into a  divertor chamber  (dashed region in F ig. la). 
In the divertor chamber  (Figs. lb and  2a), the plasma flows along the field lines until 
it reaches the neutralizer plate, where an  electrostatic sheath forms to keep the ion 
and  electron currents equal. The  ions are accelerated across the sheath and  recombine 
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FIG. 1. (a) Poloidal cross section of proposed INTOR Poloidal Divertor configuration. The region 
enclosed by dashed boundary is also pictured in Fig. 2a. (b) Schematic of the INTOR divertor 
operation. 
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FIG. 2. Cross sections of some geometries modeled. (a) Preliminary INTOR Poloidal Diverter 
design [ 11; (b) PDX scoop [R. Jacobsen, J. Nucl. Fusion 22 (1982), 2771; (c) UCLA probe experiment 
[S. Talmadge and R. Taylor, Bull. Amer. Phys. Sot. 26 (1981), 10591; (d) INTOR/FED design 
proposal [ 11. 

to form neutrals at the plate. The neutrals then travel down the divertor and the 
pump, transporting mass, momentum, and energy as they collide with the plasma and 
walls. 

In this paper, we describe an algorithm developed to model this transport using 
Monte-Carlo techniques, which is flexible enough to be applied to a wide range of 
divertor problems. For a given particle and energy flux profile, and geometry, we 
compute (1) the conductances for hydrogen and helium down pumping channels or 
against the instreaming plasma, and the relative pumping efficiencies for hydrogen 
and helium, (2) the power loads and erosion rates at the chamber walls, and (3) the 
ionization and charge-exchange particle, momentum- and energy-exchange rates in 
the plasma, and the neutral densities and pressures in the exhaust channel. We also 
note that the techniques developed here are directly applicable to a wide range of 
questions outside of tokamak modeling. 

In Section II the physical models used in the treatment of plasma profile and wall 
configurations, neutral-plasma reactions, and neutral-wall interactions are presented. 
In Section III we discuss the Monte-Carlo algorithm. The overall approach is a 
standard one, and we note only these aspects unique to our problem. In particular, 
the pseudocollisional method of tracking test flights is described. Test flights deposit 
scorings of ionizations and charge exchanges at each pseudocollision from which 
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neutral temperatures and densities are derived. A subalgorithm efficiently models wall 
reflections using Monte-Carlo data from the MARLOWE code [2]. Suppression of 
test-flight absorption and partial vectorization of the computer code economize code 
operation. Finally, in Section IV example calculations for a vacuum case and for a 
proposed INTOR divertor design are given. 

Callen et al. [3] review our modeling results for advanced divertor design, as well 
as presenting a detailed comparison with the calculations of Seki et al. [4]. The code 
has been incorporated also into a self-consistent fluid model of divertor plasmas [5]. 

II. THE PHYSICAL MODEL 

A basic assumption is that plasma conditions remain constant throughout the 
Monte-Carlo test flights. For experiments in equilibrium for > 100 msec, a time- 
independent approach is then valid. When the time scale of change is a few tens of 
microseconds, however, a time-dependent approach is necessary. We describe here 
only the time-independent model. This model could be modified easily into a time- 
dependent one by timing the test flights. 

A. Geometric and Plasma Parameters 

Plasma zone boundaries and chamber walls vary two-dimensionally in the xy 
plane, and are assumed to be independent of z. They are described by piecewise linear 
approximations. A representative sample of configurations which have been used is 
shown in Fig. 2. 

The plasma density, temperature, and flow velocity direction are specified 
individually for each zone before the calculation. Plasma flow speed is set at a fixed 
fraction of 

((Ti + Te)fii)1’2, 

where Ti is the average ion temperature and tii the average ion mass. The plasma flux 
on the walls, with the appropriate particle reflection and sheath models, provides the 
source flux boundary conditions for the neutral transport calculation. 

B. Neutral-Plasma Reactions 

The collision processes considered most important to our calculations and included 
in it are listed in Table I. The cross sections for reactions (1) and (6)-(g) in Table I 
are computed from numerical tits in Freeman and Jones [6] and Jones [ 71, and are 
used to compute tables of (uv) as a function of neutral energy E, and plasma ion 
temperature Ti, using Gauss-Hermite quadrature. We compute (uu) for reactions 
(2~(5) and (9) in Table I directly from fits in [6] and [7]. 
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TABLE I 

Neutral-Plasma Reactions Included in Our Model” 

(1) Ho +H+ +H+ +H” 
(2) e +H” +H+ +2e 
(3) e +H! +2H” +e 
(4) e +Ht +H” +H++2e 
(5) e +Hi +Hi +2e 
(5a) e +H: -+2H” 
(5b) e +Ht +H” +H’+e 
(6) He’+He+ +He+ +He’ 
(7) He”+Hetf+He2++Heo 
0-4) He”+H+ -,He+ +H” 
(9) e +He” -+He+ +2e 

’ H is hydrogen, deuterium, or tritium. We assume that if 
Hi is ionized in reaction (5), then the Ht produced is 
dissociated instantaneously by reaction (5a) or (5b). 

C. Wall-Reflection Models 
Two models for reflecting neutral atoms and ions from the divertor walls are 

included. The first is similar to that of Seki [4] for iron: if 0 is the incident polar 
angle and Ei, the incident energy in electronvolts, the reflection coefficient is 

R, = -0.237 ln(E,,/C) + 0.19, lY<40” 

= 1, e > 4o”, 

with C = 2990., 2990., and 6290. for D”, To, and He’, respectively. The reflected 
velocity cosines (V,(out), V,(out), V,(out)) vary from specular for f? z5 90”, to a 
cosine distribution in polar angle for 19z 0”. We use the formulas 

V,(out) = [cos 0 sin a + sin 8 cos d cos a] cos c - sin e sin d sin [, 

V,(out) = [cos e sin a + sin 0 cos d cos a] sin [ + sin f3 sin 4 cos c, 

V,(out) = cos 8 cos 01 - sin e cos 4 sin a, 

where 

cos a = -V,(in), 

cos c = V,(in)/(V,(in)’ + VY(in)2)“2, 

sin8=cosa&, 

and 

581/46/Z-IO 



314 HEIFETZ ET AL. 

<, g being uniform random numbers between 0 and 1. The energy of the reflected 
neutral is taken to be 

E(out) = I&(-0.22 ln[E(in)/C] + 0.06)/R,, 0<40” 

= 0.9Ei,, e > 400. 

Hydrogen and helium not reflected are assumed to desorb eventually (in steady 
state) as molecules or atoms, monoenergetically at the wall temperature, and with a 
cosine distribution in polar angle. Molecules striking the wall do so at low velocity 
and are assumed to desorb immediately, with the same cosine distribution assumed 
for desorbed H and He atoms. 

For our second model we use data from the Monte-Carlo code MARLOWE which 
computes trajectories of test particles striking a wall and scattering off the atoms in 
the crystalline lattice of the wall, ultimately coming to rest in the wall or escaping 
with a reduced velocity. For each species of incident test flux, assuming in our case a 
smooth amorphous wall of iron, a scattering distribution is computed which is a five- 
dimensional differential distribution P(v, 44, E, cz) v2 dv sin 8 de d#, in terms of 
incident energy Ei”, incident polar angle a, and outgoing speed v, polar angle 8, and 
azimuthal angle $ relative to the plane of the incident test flux and wall normal 
(Fig. 3). The fraction of incident particles reflected as a function of incident E and a 
is also computed. 

Given incident E,, and a, the three-dimensional distribution 

PE,Ju, 0, 4) V* du sin B de d# 

must be sampled. Now Pv’ dv sin 19d6d# will be highly peaked at points, both for 
physical reasons and because of too few Monte-Carlo scorings for a smooth result. 
Thus care must be taken in designing a fast sampling algorithm which is economical 
in storage. 

2 
Incident 
NeUlrOl 

Amorphous Iron 

FIG. 3. Coordinate system for MARLOWE wall reflection data. 
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In our algorithm we first reduce the sampling of Pu* do sin 8 de d# to sampling 
consecutively from the three one-dimensional distributions f ‘, f ‘, and f3, defined by 

and 

These distributions are stored as follows. Each distribution is given by n data 
points xi <x2 < a.. <x,. For O<r<l, if (i/n)<c< [(i+ 1)/n] set xI=xi. Then 
we store xl, for < = 0.1, 0.3, 0.5, 0.7, and 0.9, for each distribution off ‘, f *, and f 3 
forming the arrays F:,,(r), Fi,,(q, <), and FL,,(& f,r, 0, using a = 0, 20, 40, 60, SO”, 
and E = 50, 100, 200, 500, and 1000 eV. Thus, the largest array needed, Fi,,, has 
size 55 = 3125. 

For example, Table II gives F’, F*, and F3, for Ei, = 200 eV, a = 0”. The reflection 
coefficient is 0.4320. If a reflection occurs, three choices of a uniform random 
variable on the unit interval are made, say r= 0.3, q = 0.5, and [= 0.9. Then 
u = F’(2) = 100 eV, cos 0 = F*(3,2) = 0.6497, and cos ql = F3(5, 3,2) = -0.5448 (it 
is more convenient to store cos 8 and cos 4 than 8 and 0). For more general <, v, and 
c, we derive u, cos 0, and cos 4 through linear interpolation of F’, F*, and F3. 

A comparison of these two models will be found in [8]. Typically we use the 
MARLOWE model for 50 eV Q  Ei, < 1000 eV, and the first model for Ei, outside 
that range. This is because assumptions in MARLOWE may not be valid for 
E,, < 50 eV, and computing the arrays F’, F*, and F3 for Ei, > 1000 eV is very 
expensive. 

Wall sputtering rates for various materials were fitted from the data of Roth et al. 
[9]. The angular dependence of the rate was assumed to be proportional to 
[cos(polar angle)]‘-‘*5’. 

III. THE MONTE-CARLO ALGORITHM 

In our time-independent calculation a profile consists of a set of test flights 
(Fig. 4). This section describes how these flights are initiated, flown, and integrated to 
yield the physical parameters of interest. 

A. Test-Flight Initialization 

The source of neutrals comes from ions flowing into the neutralizer plate. G iven a 
one-dimensional ion-current distribution hitting the plate from a separate 
computation, initial positions P, at the wall are selected. Each test flight represents 
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TABLE II” 

E = F'(E)(d) 

57.3 100. 127.5 150.8 168.5 

CO8 9 = F2(QC, 

0.5104 0.6931 0.8096 0.8926 0.9672 
0.4843 0.6817 0.8009 0. A869 0.9654 
0.4753 0.6497 0.7727 0.8681 0.9609 
0.4646 0.6475 0.7642 0.8642 0.9522 
0.3343 0.508R 0.6313 0.7533 0.8867 

~0s '4 = F3(C,rl.S) 

-0.9460 -0.5096 
-0.9224 -0.5758 
-0.9481 -0.6291 
-0.9501 -0.5564 
-0.9594 -0.5536 

-0.0494 0.5299 
0.0270 0.5498 
0.0147 0.5343 
0.0380 0.5548 
0.1303 0.6682 

p3e,r1,u 

0.9293 
0.9519 
0.9507 
0.9442 
0.9567 

-0.9510 -0.6303 
-0.9448 -0.6107 
-0.9362 -0.4654 
-0.9322 -0.5519 
-0.9388 -0.5297 

-0.1349 0.5591 
-0.0077 0.4643 

0.0031 0.5703 
-0.0030 0.5741 

0.1150 0.5879 

F3(3,ll,S) 

0.9501 
0.9370 
0.9513 
0.9734 
0.9400 

-0.9308 -0.5249 
-0.9346 -0.6454 
-0.9448 -0.5862 
-0.9341 -0.5364 
-0.9474 -0.5254 

0.1161 0.6025 
-0.0176 0.4700 
-0.0408 0.6021 
-0.0625 0.5133 
-0.0254 0.5714 

F3t4,rl,0 

0.9511 
0.9325 
0.9694 
0.9494 
0.9646 

-0.9095 -0.5492 
-0.9395 -0.6243 
-0.9670 -0.5826 
-0.9401 -0.5702 
-0.9376 -0.4852 

0.0054 0.5960 
-0.0676 0.6596 
-0.0809 0.5839 

0.0194 0.5559 
0.045R 0.6537 

F3(5,v,C) 

0.9142 
0.9630 
0.9256 
0.9450 
0.9589 

-0.9343 -0.6085 -0.0343 0.5889 0.9491 
-0.9199 -0.5429 0.0072 0.6042 0.9324 
-0.9343 -0.5448 0.0822 0.6140 0.9716 
-0.9217 -0.4109 0.1232 0.6503 0.9696 
-0.9243 -0.4775 0.0642 0.6172 0.9532 

a Results from MARLOWE code for incident energy 
E = 2OOeV, polar angle of a =O”. The fraction of incideni 
particles reflected is 0.4320. 
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FIG. 4. Sample test flux flight. A triton ion strikes the neutralizer plate, reflects as a To atom, strikes 
a wall, desorbs as a TT’ molecule, dissociates, undergoes a further sequence of plasma/wall collisions 
until its weight is less than a set minimum (here 10m6), where a pure ionization occurs ending the flight. 
Plasma is 5% He2’, 47.5% D+, 47.5% T’. 

o,, = Qwa,,/N real particles per second, where Qwa,, is the total current on the walls, 
and N is the total number of test flights. Initial velocity u is determined by assuming 
that the initial ion energy is increased at the plate by a selected sheath potential and 
then attenuated by striking normal to the wall and reflecting or sticking. 

B. Test-Flight Tracking 
Given the initial position P,, velocity u, and atomic species, we are ready to begin 

the test flight. We use the pseudocollision algorithm, based on the idea of 
pseudocollisions in [lo]. Our version is flow charted in Fig. 5. 

At the beginning of each profile, two two-dimensional arrays R,(i,j) and R2(i,j) 
containing plasma zone indices in a liner uniform rectangular grid are constructed 
(Fig. 6). Given a position P in the device, its coordinates (ip,jp) in the reference 
meshes are easily computed, and its plasma zone coordinates I= Rl(iP,jp), 
J= RZ(iP,jp) looked up, determining the plasma conditions at P. 

The pseudocollisional algorithm uses this information as follows. Choosing the 
number of mean free paths p = -1n r, r a uniform random variable, 0 < < < 1, the 
position of the test flight is moved a distance @&,, where Amin the shortest mean free 
path length in the entire given plasma for a test flight with the velocity U. Assuming a 
wall has not been hit, the local mean free path length at the new position, Alocal, is 
computed using the reference arrays. The ratio p = &,in/&,ca, represents the 
probability that a real collision occurs at the new point. If a test does not result in a 
collision, we say a pseudocollision has occurred, and we repeat the process choosing 
a new p, moving a distance &,,i, and so on until the test flight hits a wall, leaves the 
device, or finally does undergo a plasma collision. 

Our pseudocollisional algorithm may be compared to the path-length estimator of 
[Ill. A poof of their equivalence is given in [ 121. A disadvantage of the path-length 

581/46/2-l t 
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FIG. 5. Flowchart of the pseudocollision algorithm. 

estimator method is the time-consuming geometric calculations required in computing 
the points of intersection of flight paths with zone boundaries. An advantage of the 
pseudocollisional algorithm over the path-length estimator algorithm is, then, that the 
reference arrays R r , R, contain the only detailed geometric calculation necessary. 
Thus the amount of geometric calculation is independent of the number of test flights 
flown. The algorithm described above to compute them is quite efficient, computing 
300 x 300 reference arrays in less than 1 CPU set on the CRAY-1 and packing the 
arrays so as to reduce storage. 

A disadvantage of the pseudocollisional algorithm is that Amin must be computed 
very often. We thus make a table of A,,,,” at the start of a set of profiles as a function 
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a b 

FIG. 6. Construction of the zone reference array for the pseudocollision algorithm. (a) Triangle 
edges are traced onto reference array using plasma zone index of the triangle. (b) Traced triangle is filled 
in. 

of neutral velocity, species, plasma density, and temperature. Note that since the 
algorithm requires only that the step size be no longer than A,,,,,, smaller lengths, 
derived from worst case study of n(av) rates, can remove the need for the large ‘l,in 
table. However, underestimating A,.,,,” means more test steps to a collision, reducing 
efftciency, so care must be used in choosing &,rn if this method is used. 

C. Test-Flight Weighting 
We use the method of suppressed absorption, as in [ 1 I]: at each collision, the 

charge exchanging probability 

is computed, where L,, is the local mean free path length due to charge exchange 
only. The test flight is then “split” between ionization and charge exchange by 
reducing its weight w to Pcxo to account for. attenuation by ionization. Thus a weight 
of 0 lon = (1 - P,,) cu is ionized. 

If, however, cu falls below a given minimum, this “splitting” is stopped, and a 
choice is made between a pure charge exchange, continuing the flight with o 
unchanged, or pure ionization, setting w = 0, and ending the flight. 

After modifying o in the suppressed absorption algorithm, to conserve energy, w is 
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further scaled by a factor K = cex 1 v I/( uCXu) to account for the charge-exchange cross 
sections being nonconstant over the Maxwellian distribution of ions. Here uCX is the 
charge-exchange cross section. We do not at present include any angular dependence 
in our charge-exchange model. 

D. Integration Methods 

The pseudocollision algorithm computes ionization and charge-exchange rates 
directly. For example, the sum over all collisions in a zone, Sian = 2 mien, gives the 
total, test-flight weight ionized in that zone. Multiplying by the total number of test 
flights iV gives the ionization rate in ionizations per second. Similar sums are made 
representing charge exchange rates, ionization, and charge exchange energies, exiting 
currents, power deposition, and erosion rates at the walls. The neutral density n, is 
derived from 

Nsi,Jv= n, ng(u,i 0)~ (3.1) 

where V is the zone volume, n, the local electron density, and oei the electron 
ionization cross section. The average energy E” of a neutral being ionized is 

JG = Wion/Sion 9 where Wion = 1 WionE, (3.2) 

the sum again being over all collisions, with E the energy of the ionized neutral. 
One weakness of this scoring method is that scoring events occur only at 

collisions. To score at each pseudocollision we modify the scoring method above by 
taking for Sian, for example, the sum 

over all pseudocollisions, where CL+,,” is as above, and p = &,in/&oca, is the real 
collision probability. On the average, Sg, = Sian, but the variance in Sil,, is less than 
that of Sian, for now a collision requiring n pseudocollisions deposits n scores instead 
of 1. 

Another weakness is that in regions containing no plasma, our sums are zero since 
A ,oea, is infinite. To compute the neutral density here, we assume a “pseudoplasma” 
present, consisting of pseudoions whose reaction with an atom leaves the atom 
unchanged in every aspect. We assume the local reaction rate of this fictitious 
reaction to be a preselected fraction of the average total (real) plasma reaction rates, 
to achieve comparable variances. Neutral density and temperature can then be 
computed as in (3.1) and (3.2), with the electron ionization quantities replaced by the 
appropriate pseudoion quantities. 

E. Variance Reduction Techniques 

Most collisions occur near the plate, resulting in a wealth of scorings there, 
compared to very few in regions far away. To improve the variance in these distant 
regions, we use a standard splitting/Russian roulette algorithm [ 131. Using larger 
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zones in regions far from the plate also increases the number of scorings per zone 
away from the plate while keeping greater resolution near the plate, where it is needed 
due to the larger gradients in the ionization/charge exchange rates there. Suppression 
of absorption, described above, increases the number of scorings in the more distant 
zones by keeping test fluxes alive which otherwise would be killed off by ionization. 
Finally, our technique of scoring at each pseudocollision is an improvement over 
recording the scores only at collisions. 

F. Optimization and Performance 

Improvements in efficiency at the programing level by factors of 2 to 3 ‘on a 
vectorizing machine, such as the CRAY-1, can come from modularizing the particle- 
tracking algorithm shown in Fig. 5 and performing each segment in loops over 64 or 
128 test fluxes. The arrays containing test-flux data are merged at each step, 
discarding the test flights as they finish their flights. We have found that the added 
overhead cost of merging is small compared to savings gained from vectorization. 
The mergers are not easily vectorized, but they consist mostly of assignment 
statements, while the expensive calculations in particle tracking are now done in 
vectorized loops. 

Performance on the CRAY-1 requires 8-10 CPU sec/lOOO test flights for a typical 
INTOR calculation, with 500 to 2000 test flights used for a typical profile. The 
program consists of -4000 of Fortran IV executable statements and uses -40,000 
decimal words of array storage. 

IV. EXAMPLE CALCULATIONS 

We include two applications of our algorithm, molecular flow through rectangular 
tubes for comparison with analytical analysis, and calculations of performances of 
proposed INTOR divertors, which exercise many of the subcalculations described in 
Section III. 

A. The Vacuum Case 

We model the case of molecular flow through a tube of rectangular cross section 
with width b s than height a and length 1. Clausing [ 141 has deduced values for 
K = QJQin, where Qi, is the incoming current and Q, the current exiting the far 
outlet. Table III lists his values, Kc,, of K along with the values, K,, , of K computed 
by us, for l/a varying from 0.2 to 10.0, using lo6 test flights and assuming a cosine 
distribution in the polar angle to the wall of velocities of reflecting particles. For 
0.1 < l/a < 4.0, [Kc, - KM,1 < 3a,, and for 5.0 < l/a < 10.0 we still have good 
agreement with ]K,, - K,, ]/Kc, < 2.0%. 

B. Proposed INTOR Divertors 

The effects of the plasma on helium and hydrogen pumping, plasma source rates, 
heat loads on the divertor walls and neutralizer plates, and the erosion rates for the 
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TABLE III” 

0.1 0.9525 0.9527 0.0002 
0.2 0.9096 0.9099 0.0003 
0.4 0.8362 0.8360 0.0004 
0.8 0.7266 0.7262 0.0004 
1.0 0.6848 0.6847 0.0005 
1.5 0.6024 0.6023 0.0005 
2.0 0.5417 0.5423 0.0005 
3.0 0.4570 0.4575 0.0005 
4.0 0.3999 0.3984 0.0005 
5.0 0.3582 0.3565 0.0005 

10.0 0.2457 0.2411 0.0004 

’ Ratios Qr/Qin of the molecular current Q, leaving the far end of a tube of 
rectangular cross section a x b and length I, b s a, b * I, to the current entering, 
Q,,, as computed by our algorithm (K,,) and by Clausing (K,,) (131, for 
i/a = 0.1 to 10.0. The standard deviation uM in the calculation of K,, is 
K,c(l - fL,cPfl “‘9 where M = lo6 test flights. 

neutralizer plate and divertor walls were computed for a variety of INTOR model 
poloidal divertors and diverted plasmas. 

A pumping calculation was made for a geometry similar to that shown in Fig. lb, 
but with a rectangular instead of hyperbolic throat. Cases were studied with the 
density having a Gaussian profile of 8.8 x 10” cme3 at the center falling to 
1.1 x 10” cmm3 at the channel walls, and central temperature of 250 eV, varying 
with the same Gaussian profile as the density. The pumping speed of the pump is 
approximated by that of a thin slot [ 141 

3.638K,,ab(T/kf)“* liters/set, (4.1) 

TABLE IV 

Relative Pumping Rates for D, T, and He in Rectangular DivertorsO 

R = Q,/Q, C = WL, 
I a 

Case (cm) (cm) D T He E R “BC DT He 

1 80 30 2.67 3.83 0.56 5.80 0.20 16.3 2.8 
2 50 30 0.53 0.70 0.25 2.46 0.16 3.9 1.6 
3 50 40 0.26 0.39 0.13 2.50 0.11 3.0 1.2 
4 100 30 1.94 2.20 1.23 1.68 

0 Divertor throats are 1 x a cm, and pumps are 40 X 8 cm. Qp and Q, are the currents leaving the 
pump and throat, respectively. E is the ratio of R = Q,,/Q, for DT over R for He. R,,, is the ratio of 
pump to throat conductances computed for a vacuum using (4.1), and C is R over R,,,. 
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where Kc, is the Clausing factor in Table III, T is in degrees Kelvin, M = 5 is the 
atomic weight of DT, the pump length 1 is 40 cm, and the width b is 25 cm. 
Assuming 12 such pumps in the device, a pump width of Q = 8 cm provides 24,200 
liters/set of pumping for the whole torus. 

The relative pumping speeds with the plasma of three such cases varying the throat 
dimensions are listed in Table IV. The ratio R = Q,,/Qt, the current QP of neutral 
particles exciting through the pump divided by the current Q, returning to the main 
plasma, is given for D, T, and He. R,,, is the ratio of the geometric pumping speed of 
the pump to that of the return channel to the main plasma, given by (4.1). 

The ratios of the Monte-Carlo calculations of the various R’s to the geometric R,,, 
reflect the effect of the plasma reducing the neutral backflow from the neutralizer 
plate to the main plasma and in raising the effective pumping speed of the pump. The 
ratios in Table IV, cases 1-3, vary from 16.3 for the 80 x 30 hydrogen case to 1.2 for 
the 50 x 40 helium case. 

We note that these three cases scale in a reasonable way. As we make the channel 
shorter, or wider, relatively more particles return to the main plasma. Applying (4.1) 
to the 80 x 30 and 50 x 30 cases, the ratio R should reduce by a factor of 0.81 as the 
channel length is decreased. The actual reduction is about 0.19 for hydrogen and 0.44 
for helium, indicating that the plasma appreciably retards the neutral backflow to the 
main plasma. Since lengthening the channel increases the ionization and charge 
exchange “optical depth” of the divertor channel, it is not surprising that the 
geometric scaling underestimates the effect. 

Since widening the channel for a given length does not increase the optical depth of 
the channel, however, one would expect in this case that the geometric scaling in 
(4.1) will be closer to the divertor result. It predicts a reduction in the R by a factor 
of 0.69 from the 50 x 30 case compared to the 50 x 40 case. This is fairly close to 
the Monte-Carlo results (0.49 for D, 0.56 for T, and 0.52 for He), indicating that one 
can use the geometric scaling for estimating the effects of varying the channel width. 

In order to compare our algorithm with an independent one, we computed 
Table IV, case 4, also treated by Seki et al. [4]. It assumes a rectangular channel 
100 cm long and 30 cm wide with a 20-cm-wide plasma (47.5 % D’, 47.5% T+, and 
5 % He’+), of uniform electron density of 3 x 10” cmm3, and temperature of 250 eV. 
Their pump model, reflecting a fixed fraction entering the pump opening instead of 
tracking test fluxes in the pump, and their neutral reflection data, were used also by 
us. Our more detailed treatment of molecules was retained. 

The backflow B = Q,/(Q, + Q,) = l/(1 + R) in their calculation varied from 0.7 to 
0.46 for DT, and from 0.7 to 0.23 for He as the density varied from 8 x lOI to 
1012 cme3. Thus their helium enrichment varies from 1 to 2. In particular, their result 
for a density of 3 x 1012 cm-3 has an enrichment of BHe/BH = 1.13. Our case at that 
density yields backflows of 0.34 for D, 0.31 for T, and 0.44 for He. This gives us a 
helium deenrichment of BHe/BH = 0.75. Considering the uncertainties in the wall- 
reflection models, the different atomic physics, and differences in the code, this 
discrepancy probably is not significant. 

A set of calculations of plasma-source rates and wall-erosion rates was carried out 
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6 

b 

FIG. 7. Ionization rate profile for (a) D+ and (b) Dl production in sample 70 x 112.5~cm INTOR 
divertor. 
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FIG. 8a. Power loads at the neutralizing plate for the INTOR divertor. 

for a more realistic hyperbolic geometry (Fig. 2a), but with throat width of 70 cm 
instead of 60 cm. Typically, the hydrogen ionization sources are peaked at the 
neutralizer plate (Fig. 7a) falling gradually toward the divertor throat, and the 
molecules are ionized at the edge of the plasma (Fig. 7b). Neutral impurities, such as 
iron, are produced by sputtering at the neutralizer plate and walls. Since the neutral 
impurity atoms are low energy (~3 eV) and heavy (A = 57), their mean free path for 
first ionization is short, and they are ionized within 2 cm of the neutralizer plate. 

The energy deposited on the walls and neutralizer plates was computed for a 
variety of sample plasmas with temperatures varying from 14 to 439 eV, and with the 
density scaled appropriately from 1.85 x 1OL3 to 10” cme3 to maintain constant 
energy flux. The power on the neutralizer plate did not vary greatly (Fig. 8a). It 
peaks at the separatrix at -400 W cm-’ and falls off rapidly. The erosion rates of the 
divertor plates and walls were calculated also for a 500-eV 1012-cm-3 diverted 
plasma. The erosion rate of the iron plate peaks at 26 cm/year at the separatrix for a 
100% duty cycle (Fig. 8b). The erosion rates of the divertor walls are much lower, 
falling rapidly with distance from the neutralizer plate (Fig. 8~). 
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FIGS. 8b, c. Erosion rates of (b) Iron neutralizing plate and (c) divertor walls for a 500 eV, 
IO* cm-’ diverted plasma (100% duty cycle). 
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